-

nihao guest [ sign in / register ]
2024-5-17 14:25:39
Article

Kim JY, Lee SH, Kim DW, Lee DW, Song CS, Lee DH, K. Detection of intercontinental reassortant H6 avian influenza viruses from wild birds in South Korea, 2015 and 2017. Front Vet Sci. 2023 Jun 12;10:1157984.  Abstract  
submitted by kickingbird at Jun, 30, 2023 from Front Vet Sci. 2023 Jun 12;10:1157984 (via https://www.frontiersin.org/articles/10.3389/fvets.2023.1157)
Avian influenza viruses (AIVs) in wild birds are phylogenetically separated in Eurasian and North American lineages due to the separated distribution and migration of wild birds. However, AIVs are occasionally ...

Cha RM, Lee YN, Park MJ, Baek YG, Shin JI, Jung CH. Genetic Characterization and Pathogenesis of H5N1 High Pathogenicity Avian Influenza Virus Isolated in South Korea during 2021-2022. Viruses. 2023 Jun 20;15(6):1403.  Abstract  
submitted by kickingbird at Jun, 30, 2023 from Viruses. 2023 Jun 20;15(6):1403 (via https://www.mdpi.com/1999-4915/15/6/1403)
High pathogenicity avian influenza (HPAI) viruses of clade 2.3.4.4 H5Nx have been circulating in poultry and wild birds worldwide since 2014. In South Korea, after the first clade 2.3.4.4b H5N1 HPAI viruses ...

Meseko C, Milani A, Inuwa B, Chinyere C, Shittu I,. The Evolution of Highly Pathogenic Avian Influenza A (H5) in Poultry in Nigeria, 2021-2022. Viruses. 2023 Jun 17;15(6):1387.  Abstract  
submitted by kickingbird at Jun, 30, 2023 from Viruses. 2023 Jun 17;15(6):1387 (via https://www.mdpi.com/1999-4915/15/6/1387)
In 2021, amidst the COVID-19 pandemic and global food insecurity, the Nigerian poultry sector was exposed to the highly pathogenic avian influenza (HPAI) virus and its economic challenges. Between 2021 ...

Abolnik C, Phiri T, Peyrot B, de Beer R, Snyman A,. The Molecular Epidemiology of Clade 2.3.4.4B H5N1 High Pathogenicity Avian Influenza in Southern Africa, 2021-2022. Viruses. 2023 Jun 16;15(6):1383.  Abstract  
submitted by kickingbird at Jun, 30, 2023 from Viruses. 2023 Jun 16;15(6):1383 (via https://www.mdpi.com/1999-4915/15/6/1383)
In southern Africa, clade 2.3.4.4B H5N1 high pathogenicity avian influenza (HPAI) was first detected in South African (SA) poultry in April 2021, followed by outbreaks in poultry or wild birds in Lesotho ...

Slomka MJ, Reid SM, Byrne AMP, Coward VJ, Seekings. Efficient and Informative Laboratory Testing for Rapid Confirmation of H5N1 (Clade 2.3.4.4) High-Pathogenicity Avian Influenza Outbreaks in the United Kingdom. Viruses. 2023 Jun 9;15(6):1344.  Abstract  
submitted by kickingbird at Jun, 30, 2023 from Viruses. 2023 Jun 9;15(6):1344 (via https://www.mdpi.com/1999-4915/15/6/1344)
During the early stages of the UK 2021-2022 H5N1 high-pathogenicity avian influenza virus (HPAIV) epizootic in commercial poultry, 12 infected premises (IPs) were confirmed by four real-time reverse-transcription-polymerase ...

Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses. 2023 Jun 8;15(6):1339.  Abstract  
submitted by kickingbird at Jun, 30, 2023 from Viruses. 2023 Jun 8;15(6):1339 (via https://www.mdpi.com/1999-4915/15/6/1339)
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually ...

Anjorin AA, Sausy A, Muller CP, Hübschen JM, Omila. Human Seasonal Influenza Viruses in Swine Workers in Lagos, Nigeria: Consequences for Animal and Public Health. Viruses. 2023 May 23;15(6):1219.  Abstract  
submitted by kickingbird at Jun, 30, 2023 from Viruses. 2023 May 23;15(6):1219 (via https://www.mdpi.com/1999-4915/15/6/1219)
The influenza A virus has been scarcely investigated in pigs in Africa, with rare detection prior to 2009. The spread of A(H1N1)pdm09 changed the epidemiology due to frequent human-to-swine transmission ...

Sun Y, Zhang T, Zhao X, Qian J, Jiang M, Jia M, Xu. High activity levels of avian influenza upwards 2018-2022: A global epidemiological overview of fowl and human infections. One Health. 2023 Feb 20;16:100511.  Abstract  
submitted by kickingbird at Jun, 28, 2023 from One Health. 2023 Feb 20;16:100511 (via https://www.sciencedirect.com/science/article/pii/S235277142)
Due to growing activities of avian influenza, more attention should be paid to avian influenza virus infections. Global summaries or national reports lack data on epidemiological patterns of avian influenza. ...

Huang J, Li K, Xiao S, Hu J, Yin Y, Zhang J, Li S,. Global epidemiology of animal influenza infections with explicit virus subtypes until 2016: A spatio-temporal descriptive analysis. One Health. 2023 Feb 20;16:100514.  Abstract  
submitted by kickingbird at Jun, 27, 2023 from One Health. 2023 Feb 20;16:100514 (via https://www.sciencedirect.com/science/article/pii/S235277142)
Influenza virus, with a global distribution, diverse animal host range and multiple virus subtypes, has caused several pandemics. To better prepare for the emergence of new subtypes and the possible threat ...

Tang Z, Carrel M, Koylu C, Kitchen A. How human ecology landscapes shape the circulation of H5N1 avian influenza: A case study in Indonesia. One Health. 2023 Apr 5;16:100537.  Abstract  
submitted by kickingbird at Jun, 27, 2023 from One Health. 2023 Apr 5;16:100537 (via https://www.sciencedirect.com/science/article/pii/S235277142)
Background: Highly pathogenic avian influenza H5N1 virus consistently threatens global public health. A better understanding of the virus' circulation mechanism is needed for future epidemic prevention. ...

Lv X, Tian J, Li X, Bai X, Li Y, Li M, An Q, Song. H10Nx avian influenza viruses detected in wild birds in China pose potential threat to mammals. One Health. 2023 Feb 21;16:100515.  Abstract  
submitted by kickingbird at Jun, 27, 2023 from One Health. 2023 Feb 21;16:100515 (via https://www.sciencedirect.com/science/article/pii/S235277142)
H10 subtype avian influenza viruses (AIVs) have been isolated from wild and domestic avian species worldwide and have occasionally crossed the species barrier to mammalian hosts. Fatal human cases of H10N8 ...

Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu. 2019-2020 H1N1 clade A5a.1 viruses have better in vitro fitness compared with the co-circulating A5a.2 clade. Sci Rep. 2023 Jun 23;13(1):10223.  Abstract  
submitted by kickingbird at Jun, 25, 2023 from Sci Rep. 2023 Jun 23;13(1):10223 (via https://www.nature.com/articles/s41598-023-37122-z)
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure ...

Okuya K, Khalil AM, Esaki M, Nishi N, Koyamada D,. Newly emerged genotypes of highly pathogenic H5N8 avian influenza viruses in Kagoshima prefecture, Japan during winter 2020/21. J Gen Virol. 2023 Jun;104(6).  Abstract  
submitted by kickingbird at Jun, 25, 2023 from J Gen Virol. 2023 Jun;104(6) (via https://pubmed.ncbi.nlm.nih.gov/37351928/)
During the 2020/21 winter season, 29 and 10 H5N8 high pathogenicity avian influenza viruses (HPAIVs) were isolated from environmental water and wild birds, respectively, in Kagoshima prefecture, Japan. ...

Cheung J, Bui AN, Younas S, Edwards KM, Nguyen HQ,. Long-Term Epidemiology and Evolution of Swine Influenza Viruses, Vietnam. Emerg Infect Dis. 2023 Jul;29(7):1397-1406.  Abstract  
submitted by kickingbird at Jun, 25, 2023 from Emerg Infect Dis. 2023 Jul;29(7):1397-1406 (via https://wwwnc.cdc.gov/eid/article/29/7/23-0165_article)
Influenza A viruses are a One Health threat because they can spill over between host populations, including among humans, swine, and birds. Surveillance of swine influenza virus in Hanoi, Vietnam, during ...

Tian J, Bai X, Li M, Zeng X, Xu J, Li P, Wang M, S. Highly Pathogenic Avian Influenza Virus (H5N1) Clade 2.3.4.4b Introduced by Wild Birds, China, 2021. Emerg Infect Dis. 2023 Jul;29(7):1367-1375.  Abstract  
submitted by kickingbird at Jun, 23, 2023 from Emerg Infect Dis. 2023 Jul;29(7):1367-1375 (via https://wwwnc.cdc.gov/eid/article/29/7/22-1149_article)
Highly pathogenic avian influenza (HPAI) subtype H5N1 clade 2.3.4.4b virus has spread globally, causing unprecedented large-scale avian influenza outbreaks since 2020. In 2021, we isolated 17 highly pathogenic ...

Parys A, Vereecke N, Vandoorn E, Theuns S, Van Ree. Surveillance and Genomic Characterization of Influenza A and D Viruses in Swine, Belgium and the Netherlands, 2019-2021. Emerg Infect Dis. 2023 Jul;29(7):1459-1464..  Abstract  
submitted by kickingbird at Jun, 23, 2023 from Emerg Infect Dis. 2023 Jul;29(7):1459-1464. (via https://wwwnc.cdc.gov/eid/article/29/7/22-1499_article)
During 2019-2021, we isolated 62 swine influenza A viruses in Belgium and the Netherlands. We also detected influenza D in pigs in the Netherlands. The ever-changing diversity of influenza viruses and ...

Graaf A, Piesche R, Sehl-Ewert J, Grund C, Pohlman. Low Susceptibility of Pigs against Experimental Infection with HPAI Virus H5N1 Clade 2.3.4.4b. Emerg Infect Dis. 2023 Jul;29(7):1492-1495.  Abstract  
submitted by kickingbird at Jun, 23, 2023 from Emerg Infect Dis. 2023 Jul;29(7):1492-1495 (via https://wwwnc.cdc.gov/eid/article/29/7/23-0296_article)
We found that nasal and alimentary experimental exposure of pigs to highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b was associated with marginal viral replication, without inducing any clinical ...

Cao G, Guo Z, Liu J, Liu M. Change from low to out-of-season epidemics of influenza in China during the COVID-19 pandemic: A time series study. J Med Virol. 2023 Jun;95(6):e28888.  Abstract  
submitted by kickingbird at Jun, 21, 2023 from J Med Virol. 2023 Jun;95(6):e28888 (via https://onlinelibrary.wiley.com/doi/10.1002/jmv.28888)
Nonpharmaceutical interventions to limit the coronavirus disease 2019 (COVID-19) pandemic might reduce the transmission of influenza viruses and disrupt the typical seasonality of influenza. However, changes ...

Liang Y. Pathogenicity and virulence of influenza. Virulence. 2023 Dec;14(1):2223057.  Abstract  
submitted by kickingbird at Jun, 21, 2023 from Virulence. 2023 Dec;14(1):2223057 (via https://www.tandfonline.com/doi/full/10.1080/21505594.2023.2)
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and ...

Rafique S, Rashid F, Mushtaq S, Ali A, Li M, Luo S. Global review of the H5N8 avian influenza virus subtype. Front Microbiol. 2023 Jun 2;14:1200681.  Abstract  
submitted by kickingbird at Jun, 20, 2023 from Front Microbiol. 2023 Jun 2;14:1200681 (via https://www.frontiersin.org/articles/10.3389/fmicb.2023.1200)
Orthomyxoviruses are negative-sense, RNA viruses with segmented genomes that are highly unstable due to reassortment. The highly pathogenic avian influenza (HPAI) subtype H5N8 emerged in wild birds in ...

7583 items, 20/Page, Page[32/380][|<<] [|<] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [>|] [>>|]

Related Pages:

Browse by Category
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2024. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn