-

nihao guest [ sign in / register ]
2024-4-27 22:10:50
Article

Leguia M, Garcia-Glaessner A, Mu?oz-Saavedra B, Ju. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat Commun. 2023 Sep 7;14(1):5489.  Abstract  
submitted by kickingbird at Sep, 10, 2023 from Nat Commun. 2023 Sep 7;14(1):5489 (via https://www.nature.com/articles/s41467-023-41182-0)
Highly pathogenic avian influenza (HPAI) A/H5N1 viruses (lineage 2.3.4.4b) are rapidly invading the Americas, threatening wildlife, poultry, and potentially evolving into the next global pandemic. In November ...

Liu X, Zhao T, Wang L, Yang Z, Luo C, Li M, Luo H,. A mosaic influenza virus-like particles vaccine provides broad humoral and cellular immune responses against influenza A viruses. NPJ Vaccines. 2023 Sep 7;8(1):132..  Abstract  
submitted by kickingbird at Sep, 10, 2023 from NPJ Vaccines. 2023 Sep 7;8(1):132. (via https://www.nature.com/articles/s41541-023-00728-5)
The development of a universal influenza vaccine to elicit broad immune responses is essential in reducing disease burden and pandemic impact. In this study, the mosaic vaccine design strategy and genetic ...

Le Y, Zhang J, Gong Z, Zhang Z, Nian X, Li X, Yu D. TRAF3 deficiency in MDCK cells improved sensitivity to the influenza A virus. Heliyon. 2023 Aug 21;9(9):e19246.  Abstract  
submitted by kickingbird at Sep, 10, 2023 from Heliyon. 2023 Aug 21;9(9):e19246 (via https://www.cell.com/heliyon/fulltext/S2405-8440(23)06454-X)
Tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein, has significant and varying effects on immunity depending on cell types. The role of TRAF3 in Madin-Darby Canine Kidney Epithelial ...

Mirolo M, Pohlmann A, Ahrens AK, Kühl B, Rubio-Gar. Highly pathogenic avian influenza A virus (HPAIV) H5N1 infection in two European grey seals ( Halichoerus grypus) with encephalitis. Emerg Microbes Infect. 2023 Sep 8:2257810.  Abstract  
submitted by kickingbird at Sep, 10, 2023 from Emerg Microbes Infect. 2023 Sep 8:2257810 (via https://www.tandfonline.com/doi/full/10.1080/22221751.2023.2)
Recent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of ...

Bauer L, Benavides FFW, Veldhuis Kroeze EJB, de Wi. The neuropathogenesis of highly pathogenic avian influenza H5Nx viruses in mammalian species including humans. Trends Neurosci. 2023 Sep 6:S0166-2236(23)00190-X.  Abstract  
submitted by kickingbird at Sep, 10, 2023 from Trends Neurosci. 2023 Sep 6:S0166-2236(23)00190-X (via https://www.cell.com/trends/neurosciences/fulltext/S0166-223)
Circulation of highly pathogenic avian influenza (HPAI) H5Nx viruses of the A/Goose/Guangdong/1/96 lineage in birds regularly causes infections of mammals, including humans. In many mammalian species, ...

Lee HJ, Ryu G, Lee KI. Symptomatic Differences between Influenza A/H3N2 and A/H1N1 in Korea. J Clin Med. 2023 Aug 30;12(17):5651.  Abstract  
submitted by kickingbird at Sep, 10, 2023 from J Clin Med. 2023 Aug 30;12(17):5651 (via https://www.mdpi.com/2077-0383/12/17/5651)
Limited understanding exists regarding clinical distinctions between influenza A/H3N2 and A/H1N1 subtypes, particularly in primary health care. We conducted a comparative analysis of symptomatic characteristics ...

Honglei Sun, et.,al. Airborne transmission of human-isolated avian H3N8 influenza virus between ferrets. Cell. 2023 Sep 4.  Abstract  
submitted by kickingbird at Sep, 5, 2023 from Cell. 2023 Sep 4 (via https://www.cell.com/cell/fulltext/S0092-8674(23)00891-7)
H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic ...

Hassan DMZ, Sturm-Ramirez DK, Islam DMS, Afreen DS. Interpretation of molecular detection of avian influenza A virus in respiratory specimens collected from live bird market workers in Dhaka, Bangladesh: Infection or contamination?. Int J Infect Dis. 2023 Aug 29:S1201-9712(23)00706-.  Abstract  
submitted by kickingbird at Sep, 4, 2023 from Int J Infect Dis. 2023 Aug 29:S1201-9712(23)00706- (via https://www.ijidonline.com/article/S1201-9712(23)00706-3/ful)
Background: Interpreting rRT-PCR results for human avian influenza A virus (AIV) detection in contaminated settings like live bird markets (LBMs) without serology or viral culture poses a challenge.Methods: ...

Moreno A, Bonfante F, Bortolami A, Cassaniti I, Ca. Asymptomatic infection with clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) in carnivore pets, Italy, April 2023. Euro Surveill. 2023 Aug;28(35).  Abstract  
submitted by kickingbird at Sep, 1, 2023 from Euro Surveill. 2023 Aug;28(35) (via https://pubmed.ncbi.nlm.nih.gov/37650905/)
In April 2023, an outbreak of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses carrying the T271A mammalian adaptive mutation in the PB2 protein was detected in a backyard poultry farm ...

Kutter JS, Linster M, de Meulder D, Bestebroer TM,. Continued adaptation of A/H2N2 viruses during pandemic circulation in humans. J Gen Virol. 2023 Aug;104(8).  Abstract  
submitted by kickingbird at Sep, 1, 2023 from J Gen Virol. 2023 Aug;104(8) (via https://www.microbiologyresearch.org/content/journal/jgv/10.)
Influenza A viruses of the H2N2 subtype sparked a pandemic in 1957 and circulated in humans until 1968. Because A/H2N2 viruses still circulate in wild birds worldwide and human population immunity is low, ...

Leow BL, Shohaimi SA, Mohd Yusop FF, Sidik MR, Moh. Molecular characterization and phylogenetic analysis of avian influenza H3N8 virus isolated from imported waterfowl in Malaysia. Trop Biomed. 2023 Jun 1;40(2):220-235.  Abstract  
submitted by kickingbird at Sep, 1, 2023 from Trop Biomed. 2023 Jun 1;40(2):220-235 (via https://msptm.org/files/Vol40No2/tb-40-2-014-Leow-B-L.pdf)
Wild aquatic birds are natural reservoirs of influenza A viruses and H3 subtype is one of the most prevalent subtypes in waterfowl. Two H3N8 viruses of low pathogenic avian influenza (LPAI) were isolated ...

COMMITTEE ON INFECTIOUS DISEASES. Recommendations for Prevention and Control of Influenza in Children, 2023-2024. Pediatrics. 2023 Aug 29:e2023063772.  Abstract  
submitted by kickingbird at Aug, 30, 2023 from Pediatrics. 2023 Aug 29:e2023063772 (via https://publications.aap.org/pediatrics/article/doi/10.1542/)
This statement updates the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccine and antiviral medications in the prevention and treatment of influenza in children ...

Jallow MM, Barry MA, Fall A, Ndiaye NK, Kiori D, S. Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human. Microorganisms. 2023 Jul 31;11(8):1961.  Abstract  
submitted by kickingbird at Aug, 28, 2023 from Microorganisms. 2023 Jul 31;11(8):1961 (via https://www.mdpi.com/2076-2607/11/8/1961)
We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic ...

Chen T, Kong D, Hu X, Gao Y, Lin S, Liao M, Fan H. Influenza H7N9 Virus Hemagglutinin with T169A Mutation Possesses Enhanced Thermostability and Provides Effective Immune Protection against Lethal H7N9 Virus Challenge in Chickens. Vaccines (Basel). 2023 Aug 2;11(8):1318.  Abstract  
submitted by kickingbird at Aug, 28, 2023 from Vaccines (Basel). 2023 Aug 2;11(8):1318 (via https://www.mdpi.com/2076-393X/11/8/1318)
H7N9 avian influenza virus (AIV) has caused huge losses in the poultry industry and impacted human public health security, and still poses a potential threat. Currently, immune prevention and control of ...

Barman S, Turner JCM, Kamrul Hasan M, Akhtar S, Je. Emergence of a new genotype of clade 2.3.4.4b H5N1 highly pathogenic avian influenza A viruses in Bangladesh. Emerg Microbes Infect. 2023 Aug 25:2252510.  Abstract  
submitted by kickingbird at Aug, 28, 2023 from Emerg Microbes Infect. 2023 Aug 25:2252510 (via https://www.tandfonline.com/doi/full/10.1080/22221751.2023.2)
Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact ...

Zhao Shanlu, etc.,al. Surveillance for Human H9N2 Avian Influenza Cases and H9 Subtype Avian Influenza Virus in the External Environment in Hunan, 2013 -2022. DOI: 10.3784/jbjc.202305160219.  Abstract  
submitted by kickingbird at Aug, 25, 2023 from DOI: 10.3784/jbjc.202305160219
Objectives To analyze the epidemiological and clinical characteristics of human cases of H9N2 avian influenza in Hunan Province, 2013 - 2022, as well as the pollution of the H9 subtype avian influenza ...

Yang Yuwei, etc.,al. Epidemiological and clinical characteristics of human infections with avian influenza A (H7N9) and A (H5N6) viruses in Guangdong province, 2013-2018. DOI:10.3760/cma.j.issn.1673-4092.2019.06.004.  Abstract  
submitted by kickingbird at Aug, 25, 2023 from DOI:10.3760/cma.j.issn.1673-4092.2019.06.004 (via https://rs.yiigle.com/cmaid/1175653)
Objective To analyze the epidemiological and clinical characteristics of human infections with avian influenza A (H7N9) and A (H5N6) viruses between 2013 and 2018 in Guangdong province.Methods The confirmed ...

Bo Hong, etc.,al. Distribution and gene characteristics of H3, H4 and H6 subtypes of low pathogenic avian influenza viruses in environment related avian influenza viruses during 2014-2021 in China. DOI:10.3760/cma.j.cn112150-20220810-00803.  Abstract  
submitted by kickingbird at Aug, 25, 2023 from DOI:10.3760/cma.j.cn112150-20220810-00803 (via https://rs.yiigle.com/cmaid/1430088)
Objective To analyze the characteristics of low pathogenic H3, H4 and H6 subtypes of avian influenza viruses in environment related avian influenza viruses in China from 2014 to 2021.Methods Surveillance ...

Wu Jingjing, etc.,al. Surveillance of environmental avian influenza virus in Fujian province, 2017-2021. DOI:10.3760/cma.j.cn112866-20220811-00176.  Abstract  
submitted by kickingbird at Aug, 25, 2023 from DOI:10.3760/cma.j.cn112866-20220811-00176 (via https://rs.yiigle.com/cmaid/1447498)
Objective To analyze the epidemiologic characteristics of environmental samples of avian influenza virus in Fujian province from 2017 to 2021, and provide a reference for the prevention and control of ...

Huang LY, etc.,al. Epidemiological investigation of the first confirmed human case of avian influenza A(H5N6) virus infection in Beijing. DOI:10.3760/cma.j.issn.1673-4092.2020.05.007.  Abstract  
submitted by kickingbird at Aug, 25, 2023 from DOI:10.3760/cma.j.issn.1673-4092.2020.05.007 (via https://rs.yiigle.com/cmaid/1257603)
Objective To analyze the epidemiological characteristics of the first human case of avian influenza A(H5N6) virus infection in Beijing, so as to provide evidences for prevention and control of avian influenza ...

7528 items, 20/Page, Page[24/377][|<<] [|<] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [>|] [>>|]

Related Pages:

Browse by Category
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2024. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn