Ding X, Ma Y, Li S, Liu J, Qin L, Wu A. Influenza virus reassortment patterns exhibit preference and continuity while uncovering cross-species transmission events. Brief Bioinform. 2025 May 1;26(3):bbaf233
Genomic reassortment is a key driver of influenza virus evolution and a major factor in pandemic emergence, as reassorted strains can exhibit significantly altered antigenicity. However, due to technical and ethical constraints, research on reassortment patterns (RPs) has been limited, impeding effective surveillance and control strategies. To address this gap, we developed FluRPId, a framework for identifying RPs based on the genetic diversity of influenza viruses. FluRPId integrates principles of reassortment diversity maximization, dominance, and epidemiological likelihood to assess the credibility of detected reassortment events. Applying FluRPId, we constructed a comprehensive reassortment landscape of influenza viruses, encompassing widespread reassortment events with high credibility, which also include most previously reported reassortment events. Our analysis revealed that the NS gene frequently reassorts with PA and NA, while reassortment involving HA, NA, and NS occurs more frequently than expected. Furthermore, we identified specific loci combinations that exhibit strong linkage during reassortment, providing insights into segment association preferences. Additionally, extensive reassortment chains were observed across all subtypes, underscoring the continuity of reassortment in influenza virus evolution. Notably, we identified significant cross-species reassortment events and characterized host adaptation changes in cross-species-transmitted viruses. Our study provides the most comprehensive reassortment landscape of influenza viruses to date, uncovering key patterns, preferences, and evolutionary continuity. These findings bridge a critical gap in macro-scale reassortment studies and offer insights for future research and control efforts.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


