Influenza virus reassortment patterns exhibit preference and continuity while uncovering cross-species transmission events

Genomic reassortment is a key driver of influenza virus evolution and a major factor in pandemic emergence, as reassorted strains can exhibit significantly altered antigenicity. However, due to technical and ethical constraints, research on reassortment patterns (RPs) has been limited, impeding effective surveillance and control strategies. To address this gap, we developed FluRPId, a framework for identifying RPs based on the genetic diversity of influenza viruses. FluRPId integrates principles of reassortment diversity maximization, dominance, and epidemiological likelihood to assess the credibility of detected reassortment events. Applying FluRPId, we constructed a comprehensive reassortment landscape of influenza viruses, encompassing widespread reassortment events with high credibility, which also include most previously reported reassortment events. Our analysis revealed that the NS gene frequently reassorts with PA and NA, while reassortment involving HA, NA, and NS occurs more frequently than expected. Furthermore, we identified specific loci combinations that exhibit strong linkage during reassortment, providing insights into segment association preferences. Additionally, extensive reassortment chains were observed across all subtypes, underscoring the continuity of reassortment in influenza virus evolution. Notably, we identified significant cross-species reassortment events and characterized host adaptation changes in cross-species-transmitted viruses. Our study provides the most comprehensive reassortment landscape of influenza viruses to date, uncovering key patterns, preferences, and evolutionary continuity. These findings bridge a critical gap in macro-scale reassortment studies and offer insights for future research and control efforts.