Sun H, Wu G, Zhang J, Wang Y, Qiu Y, Man H, Zhang. Characterization of an intracellular humanized single-chain antibody to matrix protein (M1) of H5N1 virus. PLoS One. 2022 Mar 31;17(3):e0266220
We developed a human intracellular antibody based on the M1 protein from avian influenza virus H5N1 (A/meerkat/Shanghai/SH-1/2012) and then characterized the properties of this antibody. The M1 protein sequence was amplified by RT-PCR using the cDNA of the H5N1 virus as a template, expressed in bacterial expression system BL21 (DE3) and purified. A human strain, high affinity, and single chain antibody (HuScFv) against M1 protein was obtained by phage antibody library screening using M1 as an antigen. A recombinant TAT-HuScFv protein was expressed by fusion with the TAT protein transduction domain (PTD) gene of HIV to prepare a human intracellular antibody against avian influenza virus. Further analysis demonstrated that TAT-HuScFv could inhibit the hemagglutination activity of the 300 TCID50 H1N1 virus, thus providing preliminary validation of the universality of the antibody. After two rounds of M1 protein decomposition, the TAT-HuScFv antigen binding site was identified as Alanine (A) at position 239. Collectively, our data describe a recombinant antibody with high binding activity against the conserved sequences of avian influenza viruses. This intracellular recombinant antibody blocked the M1 protein that infected intracellular viruses, thus inhibiting the replication and reproduction of H5N1 viruses.
See Also:
Latest articles in those days:
- Extended influenza seasons in Australia and New Zealand in 2025 due to the emergence of influenza A(H3N2) subclade K viruses 10 hours ago
- Dynamic ensemble deep learning with multi-source data for robust influenza forecasting in Yangzhou 10 hours ago
- Structural and immunological characterization of the H3 influenza hemagglutinin during antigenic drift 10 hours ago
- Novel Highly Pathogenic Avian Influenza A(H5N1) Virus, Argentina, 2025 13 hours ago
- Avian influenza overview September - November 2025 2 days ago
[Go Top] [Close Window]


