Peterson JM, O´Leary CA, Moss WN. In silico analysis of local RNA secondary structure in influenza virus A, B and C finds evidence of widespread ordered stability but little evidence of significant covariation. Sci Rep. 2022 Jan 10;12(1):310
Influenza virus is a persistent threat to human health; indeed, the deadliest modern pandemic was in 1918 when an H1N1 virus killed an estimated 50 million people globally. The intent of this work is to better understand influenza from an RNA-centric perspective to provide local, structural motifs with likely significance to the influenza infectious cycle for therapeutic targeting. To accomplish this, we analyzed over four hundred thousand RNA sequences spanning three major clades: influenza A, B and C. We scanned influenza segments for local secondary structure, identified/modeled motifs of likely functionality, and coupled the results to an analysis of evolutionary conservation. We discovered 185 significant regions of predicted ordered stability, yet evidence of sequence covariation was limited to 7 motifs, where 3-found in influenza C-had higher than expected amounts of sequence covariation.
See Also:
Latest articles in those days:
- A global dataset of spatiotemporal co-occurrence patterns of avian influenza virus-associated migratory birds 3 hours ago
- H4N6 avian influenza virus in Iran: first isolation and molecular insights 3 hours ago
- Molecular characterization and phylogeography of equine influenza virus H3N8 detected in donkeys in Nigeria 2022-2023 3 hours ago
- Identification of Mannose-Capped-Arabinomannan 101-mer as a Potential Influenza Virus Vaccine Adjuvant 3 hours ago
- The successful treatment of a case with severe human avian influenza A (H10N3) infection 3 hours ago
[Go Top] [Close Window]


