Kauffmann AD, Kennedy SD, Moss WN, Kierzek E, Kier. Nuclear Magnetic Resonance reveals a two hairpin equilibrium near the 3´-splice site of Influenza A segment 7 mRNA that can be shifted by oligonucleotides. RNA. 2022 Jan 4:rna.078951.121
Influenza A kills hundreds of thousands of people globally every year and has potential to generate more severe pandemics. Influenza A´s RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of eight nucleotides in a pseudoknot that sequesters a 3´ splice site in canonical pairs until a conformational change releases it into a dynamic 2X2 nucleotide internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains four and likely five base pairs between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.
See Also:
Latest articles in those days:
- [preprint]Mass mortality at penguin mega-colonies due to avian cholera confounds H5N1 HPAIV surveillance in Antarctica 5 hours ago
- [preprint]How the 1918-1920 Influenza Pandemic Spread Across Switzerland - Spatial Patterns and Determinants of Incidence and Mortality 6 hours ago
- Influenza C Virus in Children With Acute Bronchiolitis and Febrile Seizures 10 hours ago
- Feasibility and Safety of Aerosolized Influenza Virus Challenge in Humans Using Two Modern Delivery Systems 10 hours ago
- Avian Influenza Weekly Update # 1026: 12 December 2025 1 days ago
[Go Top] [Close Window]


