Guo Y, Ding P, Li Y, Zhang Y, Zheng Y, Yu M, Suzuk. Genetic and biological properties of H10N3 avian influenza viruses: a potential pandemic candidate?. Transbound Emerg Dis. 2022 Jan 23
The continued emergence of human illness caused by avian influenza viruses (AIVs) demonstrates the threat of strains such as H5N1, H7N9, H10N8 and now H10N3. The genetic and biological properties of H10N3 viruses are not fully understood. In this study, three H10N3 strains isolated from live poultry markets (LPMs) were systematically studied. Genome sequencing showed that the poultry-origin viruses are highly homologous to the human H10N3 isolate. The three avian strains were A/chicken/Jiangsu/0146/2021(abbreviated as JS146, H10N3), A/chicken/Jiangsu/0169/2021 (JS169, H10N3) and A/chicken/Jiangsu/0189/2021(JS189, H10N3). Animal studies indicated that all three viruses are highly pathogenic to mice, and that all could replicate efficiently in mouse nasal turbinate and lungs despite maintaining their avian receptor binding affinity. We also found that these viruses replicated efficiently in A549 cells and chicken embryos. The strain JS146 had sensitivity to the neuraminidase-targeting drugs oseltamivir and zanamivir, whereas JS169 and JS189 were more resistant; genetic comparison implied that a substitution at NA position 368 conferred drug resistance. Importantly, several key molecular markers associated with mammalian adaptation had been detected in both avian and human-isolated H10N3 influenza viruses in the HA (G228S), PB2 (I292V and A588V), PB1 (M317V and I368V) and PA (A343S, K356R and S409N) protein. The above work contributes new insight into the biology of this potentially zoonotic subtype and provides evidence supporting the continued epidemiological monitoring of human infections caused by AIV subtype H10N3.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


