Yu Z, Cheng K, Sun W, Zhang X, et al. PB2 and HA mutations increase the virulence of highly pathogenic H5N5 clade 2.3.4.4 avian influenza virus in mice. Arch Virol 2017 Oct 31
H5 clade 2.3.4.4 influenza A viruses pose a potential threat to public health and are a cause of public concern. Here, we generated mouse-adapted viruses of a waterfowl-origin H5N5 virus (H5 clade 2.3.4.4) to identify adaptive changes that confer increased virulence in mammals. After two passages, we obtained a mouse-adapted H5N5 virus that contained single amino acid substitutions in the PB2 (E627K) and hemagglutinin (HA) (F430L) proteins. We then analyzed the impact of these individual amino acid substitutions on viral pathogenicity to mammals. The 50% mouse lethal dose (MLD50) of the H5N5 virus containing the PB2-E627K substitution or the HA-F430L substitution was reduced 1000-fold or 3.16-fold, respectively. Furthermore, we found that PB2-E627K enhanced viral replication kinetics in vitro and in vivo. These results suggest that the PB2-E627K and HA-F430L substitutions are important for adaptation of H5N5 AIVs to mammals. These findings emphasize the importance of continued surveillance of poultry for H5N5 AIVs with these amino acid substitutions.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


