Goka EA, Vallely PJ, Mutton KJ, Klapper PE.. Mutations associated with severity of the pandemic influenza A(H1N1)pdm09 in humans: a systematic review and meta-analysis of epidemiological evidence. Arch Virol. 2014 Jul 31.
Mutations in the haemagglutinin (HA), non-structural protein 1 (NS1) and polymerase basic protein 2 (PB2) of influenza viruses have been associated with virulence. This study investigated the association between mutations in these genes in influenza A(H1N1)pdm09 virus and the risk of severe or fatal disease. Searches were conducted on the MEDLINE, EMBASE and Web of Science electronic databases and the reference lists of published studies. The PRISMA and STROBE guidelines were followed in assessing the quality of studies and writing-up. Eighteen (18) studies, from all continents, were included in the systematic review (recruiting patients 0 - 77 years old). The mutation D222G was associated with a significant increase in severe disease (pooled RD: 11 %, 95 % CI: 3.0 % - 18.0 %, p = 0.004) and the risk of fatality (RD: 23 %, 95 % CI: 14.0 %-31.0 %, p = < 0.0001). No association was observed between the mutations HA-D222N, D222E, PB2-E627K and NS1-T123V and severe/fatal disease. The results suggest that no virus quasispecies bearing virulence-conferring mutations in the HA, PB2 and NS1 predominated. However issues of sampling bias, and bias due to uncontrolled confounders such as comorbidities, and viral and bacterial coinfection, should be born in mind. Influenza A viruses should continue to be monitored for the occurrence of virulence-conferring mutations in HA, PB2 and NS1. There are suggestions that respiratory virus coinfections also affect virus virulence. Studies investigating the role of genetic mutations on disease outcome should make efforts to also investigate the role of respiratory virus coinfections.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


