Michael Worobey,1, Guan-Zhu Han1, & Andrew Rambaut. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature(2014)doi:10.1038/nature13016
Zoonotic infectious diseases such as influenza continue to pose a grave threat to human health1. However, the factors that mediate the emergence of RNA viruses such as influenza?A virus (IAV) are still incompletely understood2, 3. Phylogenetic inference is crucial to reconstructing the origins and tracing the flow of IAV within and between hosts3, 4, 5, 6, 7, 8. Here we show that explicitly allowing IAV host lineages to have independent rates of molecular evolution is necessary for reliable phylogenetic inference of IAV and that methods that do not do so, including ‘relaxed’ molecular clock models9, can be positively misleading. A phylogenomic analysis using a host-specific local clock model recovers extremely consistent evolutionary histories across all genomic segments and demonstrates that the equine H7N7 lineage is a sister clade to strains from birds—as well as those from humans, swine and the equine H3N8 lineage—sharing an ancestor with them in the mid to late 1800s. Moreover, major western and eastern hemisphere avian influenza lineages inferred for each gene coalesce in the late 1800s. On the basis of these phylogenies and the synchrony of these key nodes, we infer that the internal genes of avian influenza virus (AIV) underwent a global selective sweep beginning in the late 1800s, a process that continued throughout the twentieth century and up to the present. The resulting western hemispheric AIV lineage subsequently contributed most of the genomic segments to the 1918 pandemic virus and, independently, the 1963 equine H3N8 panzootic lineage. This approach provides a clear resolution of evolutionary patterns and processes in IAV, including the flow of viral genes and genomes within and between host lineages
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


