Chen H, Yuan H, Gao R, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 2014 (published online Feb 4)
Background
Human infections with different avian influenza viruses—eg, H5N1, H9N2, and H7N9—have raised concerns about pandemic potential worldwide. We report the first human infection with a novel reassortant avian influenza A H10N8 virus.
Methods
We obtained and analysed clinical, epidemiological, and virological data from a patient from Nanchang City, China. Tracheal aspirate specimens were tested for influenza virus and other possible pathogens by RT-PCR, viral culture, and sequence analyses. A maximum likelihood phylogenetic tree was constructed.
Findings
A woman aged 73 years presented with fever and was admitted to hospital on Nov 30, 2013. She developed multiple organ failure and died 9 days after illness onset. A novel reassortant avian influenza A H10N8 virus was isolated from the tracheal aspirate specimen obtained from the patient 7 days after onset of illness. Sequence analyses revealed that all the genes of the virus were of avian origin, with six internal genes from avian influenza A H9N2 viruses. The aminoacid motif GlnSerGly at residues 226—228 of the haemagglutinin protein indicated avian-like receptor binding preference. A mixture of glutamic acid and lysine at residue 627 in PB2 protein—which is associated with mammalian adaptation—was detected in the original tracheal aspirate samples. The virus was sensitive to neuraminidase inhibitors. Sputum and blood cultures and deep sequencing analysis indicated no co-infection with bacteria or fungi. Epidemiological investigation established that the patient had visited a live poultry market 4 days before illness onset.
Interpretation
The novel reassortant H10N8 virus obtained is distinct from previously reported H10N8 viruses. The virus caused human infection and could have been associated with the death of a patient.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 15 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 15 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 15 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 15 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


