WILKS S, de Graaf M, Smith DJ, Burke DF, et al. A review of influenza haemagglutinin receptor binding as it relates to pandemic properties. Vaccine. 2012 Jun 19;30(29):4369-76.
Haemagglutinin is a determinant of many viral properties, and successful adaptation to a human-like form is thought to be an important step toward pandemic influenza emergence. The availability of structurally distinct sialic acid linked receptors in the sites of human and avian influenza infection are generally held to account for the differences observed, but the relevance of other selection pressures has not been elucidated. There is evidence for genetic and structural constraints of haemagglutinin playing a role in restricting haemagglutinin adaptation, and also for differences in the selection pressure to alter binding, specifically when considering virus replication within host compared to transmission between hosts. Understanding which characteristics underlie such adaptations in humans is now possible in greater detail by using glycan arrays. However, results from these assays must also interpreted in context of an as yet still to be determined detailed knowledge of the structural diversity of sialic acids in the human respiratory tract. A clearer understanding of the evolutionary benefits conveyed by different haemagglutinin properties would have substantial impact and would affect the risk we allocate to viral propagation in different species, such as swine and poultry. Relevant to the H5N1 threat, current evidence also suggests that mortality associated with any emergent pandemic from current strains may be reduced if haemagglutinin specificity changes, further emphasising the importance of understanding how and if selection pressures in the human will cause such an alteration.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


