KASSON PM. Receptor Binding by Influenza Virus: Using Computational Techniques to Extend Structural Data. Biochemistry. 2012
Influenza attaches to host cells via hemagglutinin binding of cell-surface glycans. These relatively low-affinity interactions involving flexible ligands are critical in determining tissue and host specificity, but their dynamic nature complicates structural characterization of hemagglutinin-receptor complexes. Molecular simulation can assist in analyzing glycan and protein flexibility in crystallized complexes, assessing how binding might change under mutation or altered glycosylation patterns, and evaluating how soluble ligands may relate to physiological presentation on the plasma membrane. Molecular dynamics simulation also has the potential to help integrate structural and dynamic data sources. Here we review recent progress from analysis of molecular dynamics simulation and outline challenges for the future.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


