Decha P, Rungrotmongkol T, Intharathep P, Malaisre. Source of High Pathogenicity of an Avian Influenza Virus H5N1:Why H5 is Better Cleaved by Furin. Biophys J. 2008 Mar 28
Origin of high pathogenicity of an emerging avian influenza H5N1 due to the -RRRKK- insertion at the cleavage loop of the hemagglutinin H5, was studied using the molecular dynamics technique, in comparison with those of the non-inserted H5 and H3 bound to furin active site. The cleavage loop of the highly pathogenic H5 was found to bind strongly to the furin cavity, serving as a conformation suitable for the proteolytic reaction. With this configuration, the appropriate interatomic distances were found for all three reaction centers of the enzyme-substrate complex: there are the arrangement of the catalytic triad, attachment of the catalytic Ser368 to the reactive S1-Arg, and formation of the oxyanion hole. Experimentally, the -RRRKK- insertion was also found to increase in cleavage of hemagglutinin by furin. The simulated data provide a clear answer to the question of why inserted H5 is better cleaved by furin than the other subtypes, explaining the high pathogenicity of avian influenza H5N1.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 12 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 12 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 12 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 12 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 1 days ago
[Go Top] [Close Window]


