Townsend MB, Smagala JA, Dawson ED, Deyde V, Gubar. Detection of adamantane-resistant influenza on a microarray.. J Clin Virol. 2008 Feb 23
BACKGROUND: Influenza A has the ability to rapidly mutate and become resistant to the commonly prescribed influenza therapeutics, thereby complicating treatment decisions. OBJECTIVE: To design a cost-effective low-density microarray for use in detection of influenza resistance to the adamantanes. STUDY DESIGN: We have taken advantage of functional genomics and microarray technology to design a DNA microarray that can detect the two most common mutations in the M2 protein associated with adamantane resistance, V27A and S31N. RESULTS: In a blind study of 22 influenza isolates, the antiviral resistance-chip (AVR-Chip) had a success rate of 95% for detecting these mutations. Microarray data from a larger set of samples were further analyzed using an artificial neural network and resulted in a correct identification rate of 94% for influenza virus samples that had V27A and S31N mutations. CONCLUSIONS: The AVR-Chip provided a method for rapidly screening influenza viruses for adamantane sensitivity, and the general approach could be easily extended to detect resistance to other chemotherapeutics.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 12 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 12 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 12 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 12 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 1 days ago
[Go Top] [Close Window]


