NAGATA T, Toyota T, Ishigaki H, Ichihashi T, et al. Peptides coupled to the surface of a kind of liposome protect infection of influenza viruses. Vaccine. 2007 Jun 21;25(26):4914-21
In our previous study, OVA conjugated on the surface of a liposome, we termed Oleoyl liposome, which consisted of dioleoyl phosphatidyl choline, dioleoyl phosphatidyl ethanolamine, dioleoyl phosphatidyl glycerol acid and cholesterol in a 4:3:7:2 molar ratio, induced OVA-specific IgG antibody production but not OVA-specific IgE antibody production that is detrimental to the host. Furthermore, OVA(257-264)-Oleoyl liposome elicited CTL responses in the presence of CpG and rejected E.G7 tumors in mice. In this study we tested whether a peptide-Oleoyl liposome conjugates are capable of inducing protection against viral growth. Subcutaneous inoculation of NP(366-374)-Oleoyl liposome with CpG inhibited growth of influenza viruses in lungs of mice. Thus, surface-linked liposomal peptide might serve as an effective vaccine without detrimental effects in the presence of immune potentiators.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


