Sawada T, Hashimoto T, Nakano H, Suzuki T, Ishida. Why does avian influenza A virus hemagglutinin bind to avian receptor stronger than to human receptor? Ab initio fragment molecular orbital studies. Biochem Biophys Res Commun. 2006 Oct 12
Influenza A viruses attach to alpha-sialosides on the target cell surface by their hemagglutinins, which strictly recognize the difference in sialic acid-galactose linkage. Why does avian virus H3 subtype bind to avian receptor Neu5Ac(alpha2-3)Gal stronger than to human receptor Neu5Ac(alpha2-6)Gal? Why does avian H3 mutated Gln226 to Leu preferentially bind to human receptor? In this paper, we theoretically answer the questions by molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. The binding energy between avian H3 and avian receptor is 8.2kcal/mol larger than that of the avian H3-human receptor complex estimated at the FMO-HF/STO-3G level, which is a reason that avian H3 binds to avian receptor stronger than to human receptor. Avian Leu226 H3 clashes to Gal unit on the avian receptor to quite decrease its binding affinity. In contrast, Gal unit on the human receptor forms intermolecular hydrophobic interaction with avian Leu226 H3 to afford moderate binding affinity.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


