SCHEERLINCK JP , Gekas S, Yen HH, Edwards S, et al. Local immune responses following nasal delivery of an adjuvanted influenza vaccine. Vaccine. 2006
Centre for Animal Biotechnology, University of Melbourne, Parkville, 3010 Vic., Australia.
A key barrier to producing effective nasal immunisations is the low efficiency of uptake of vaccines across the nasal mucosa. Using a recently developed cannulation system, we examined the antibody response induced by nasal immunisation with an ISCOMATRIX((R)) influenza vaccine. This showed for the first time, that following nasal vaccination, specific antibodies enter the circulation of primed animals via the draining lymphatics as a wave that peaks approximately 5-6 days after vaccination. These antibodies included some of the IgA isotype and possessed functional haemagglutination inhibition activity. These responses, though small, were induced using a very simple delivery system, emphasising the applicability of this cannulation model for evaluation of excipients and adjuvants aimed at improving intranasal vaccine efficacy.
A key barrier to producing effective nasal immunisations is the low efficiency of uptake of vaccines across the nasal mucosa. Using a recently developed cannulation system, we examined the antibody response induced by nasal immunisation with an ISCOMATRIX((R)) influenza vaccine. This showed for the first time, that following nasal vaccination, specific antibodies enter the circulation of primed animals via the draining lymphatics as a wave that peaks approximately 5-6 days after vaccination. These antibodies included some of the IgA isotype and possessed functional haemagglutination inhibition activity. These responses, though small, were induced using a very simple delivery system, emphasising the applicability of this cannulation model for evaluation of excipients and adjuvants aimed at improving intranasal vaccine efficacy.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


