SALOMON R , Franks J, Govorkova EA, Ilyushina NA, et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med. 2006 Mar 13; [Epub ahead of print]
Department of Infectious Diseases and 2Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN 38105.
H5N1 influenza viruses transmitted from poultry to humans in Asia cause high mortality and pose a pandemic threat. Viral genes important for cell tropism and replication efficiency must be identified to elucidate and target virulence factors. We applied reverse genetics to generate H5N1 reassortants combining genes of lethal A/Vietnam/1203/04 (VN1203), a fatal human case isolate, and nonlethal A/chicken/Vietnam/C58/04 (CH58) and tested their pathogenicity in ferrets and mice. The viruses´ hemagglutinins have six amino acids differences, identical cleavage sites, and avian-like alpha-(2,3)-linked receptor specificity. Surprisingly, exchanging hemagglutinin and neuraminidase genes did not alter pathogenicity, but substituting CH58 polymerase genes completely attenuated VN1203 virulence and reduced viral polymerase activity. CH58´s NS gene partially attenuated VN1203 in ferrets but not in mice. Our findings suggest that for high virulence in mammalian species an avian H5N1 virus with a cleavable hemagglutinin requires adaptive changes in polymerase genes to overcome the species barrier. Thus, novel antivirals targeting polymerase proteins should be developed.
H5N1 influenza viruses transmitted from poultry to humans in Asia cause high mortality and pose a pandemic threat. Viral genes important for cell tropism and replication efficiency must be identified to elucidate and target virulence factors. We applied reverse genetics to generate H5N1 reassortants combining genes of lethal A/Vietnam/1203/04 (VN1203), a fatal human case isolate, and nonlethal A/chicken/Vietnam/C58/04 (CH58) and tested their pathogenicity in ferrets and mice. The viruses´ hemagglutinins have six amino acids differences, identical cleavage sites, and avian-like alpha-(2,3)-linked receptor specificity. Surprisingly, exchanging hemagglutinin and neuraminidase genes did not alter pathogenicity, but substituting CH58 polymerase genes completely attenuated VN1203 virulence and reduced viral polymerase activity. CH58´s NS gene partially attenuated VN1203 in ferrets but not in mice. Our findings suggest that for high virulence in mammalian species an avian H5N1 virus with a cleavable hemagglutinin requires adaptive changes in polymerase genes to overcome the species barrier. Thus, novel antivirals targeting polymerase proteins should be developed.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 11 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 11 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 11 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 12 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 1 days ago
[Go Top] [Close Window]


