White MR, Crouch E, Vesona J, Tacken PJ, Batenburg JJ, Leth-Larsen R, Holmskov U, Hartshorn KL. Respiratory Innate Immune Proteins Differentially Modulate the Neutrophil Respiratory Burst Response to Influenza A Virus. Am J Physiol Lung Cell Mol Physiol. 2005 Jun 10; [Epub ahead of print]
Respiratory Innate Immune Proteins Differentially Modulate the Neutrophil Respiratory Burst Response to Influenza A Virus.
White MR, Crouch E, Vesona J, Tacken PJ, Batenburg JJ, Leth-Larsen R, Holmskov U, Hartshorn KL.
Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
Oxidants and neutrophils contribute to lung injury during influenza A virus (IAV) infection. Surfactant protein D plays a pivotal role in restricting IAV replication and inflammation in the first several days after infection. Despite its potent anti-inflammatory effects in vivo, pre-incubation of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent pro-inflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms show either no effect or inhibit these responses. Furthermore, if neutrophils are pre-incubated with multimeric SP-D before adding IAV, oxidant responses to the virus are significantly reduced. The ability of SP-D to increase neutrophil uptake of IAV can be dissociated from enhancement of oxidant responses. Finally, several other innate immune proteins that bind to SP-D and/or IAV (i.e. SP-A, lung gp-340 or mucin) significantly reduce the ability of SP-D to promote neutrophil oxidant response. As a result, the net effect of bronchoalveolar lavage (BAL) fluids is to increase neutrophil uptake of IAV while reducing the respiratory burst response to virus.
White MR, Crouch E, Vesona J, Tacken PJ, Batenburg JJ, Leth-Larsen R, Holmskov U, Hartshorn KL.
Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
Oxidants and neutrophils contribute to lung injury during influenza A virus (IAV) infection. Surfactant protein D plays a pivotal role in restricting IAV replication and inflammation in the first several days after infection. Despite its potent anti-inflammatory effects in vivo, pre-incubation of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent pro-inflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms show either no effect or inhibit these responses. Furthermore, if neutrophils are pre-incubated with multimeric SP-D before adding IAV, oxidant responses to the virus are significantly reduced. The ability of SP-D to increase neutrophil uptake of IAV can be dissociated from enhancement of oxidant responses. Finally, several other innate immune proteins that bind to SP-D and/or IAV (i.e. SP-A, lung gp-340 or mucin) significantly reduce the ability of SP-D to promote neutrophil oxidant response. As a result, the net effect of bronchoalveolar lavage (BAL) fluids is to increase neutrophil uptake of IAV while reducing the respiratory burst response to virus.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 9 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 9 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 9 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 9 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 1 days ago
[Go Top] [Close Window]


