Etori A. Moreira, etc.,al. [preprint]Bovine-derived influenza A virus (H5N1) shows efficient replication in well-differentiated human nasal epithelial cells without requiring genetic adaptation. https://doi.org/10.64898/2026.01.16.699876
Highly pathogenic avian influenza H5N1 viruses of clade 2.3.4.4b have caused widespread avian mortality and sporadic mammalian infections, raising concerns about their potential for efficient replication in the human population. Efficient replication in the human upper respiratory tract is considered a key barrier to transmission. Here, we demonstrate that an H5N1 virus isolated from bovine milk in Texas in 2024 (H5N1Tex/24) replicates as efficiently as the 2009 pandemic H1N1 virus (H1N1HH4/09) in well-differentiated human nasal epithelial cells. These cells express both avian- and human-type influenza receptors, indicating receptor adaptation is unnecessary for entry. H5N1Tex/24 replicates effectively at 33 degrees Celsius, reflecting nasal cavity temperature, whereas earlier avian H5N1 strains require 37 degrees Celsius, suggesting that H5N1Tex/24 has acquired another key adaptive feature to the human upper respiratory tract. H5N1Tex/24 remains sensitive to interferon-λ (IFN-λ) despite inducing low cytokine levels. Notably, no known mammalian-adaptive mutations such as PB2-E627K were detected. These findings suggest that H5N1Tex/24 possesses intrinsic traits enabling efficient replication in the human upper airways, a critical step toward potential airborne transmission, underscoring the need for vigilant surveillance.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 20 hours ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 20 hours ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 21 hours ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 21 hours ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 21 hours ago
[Go Top] [Close Window]


