Meng F, Cheng Z, Feng Z, Zhang Y, Zhang Y, Wang Y,. H128N Substitution in the Sa Antigenic Site of HA1 Causes Antigenic Drift Between Eurasian Avian-like H1N1 and 2009 Pandemic H1N1 Influenza Viruses. Viruses. 2025; 17(10):1360
The antigenic relationship between Eurasian avian-like H1N1 swine influenza viruses (EA H1N1) and human pandemic 2009 H1N1 viruses (2009/H1N1) remains a critical question for influenza surveillance and vaccine efficacy. This study systematically investigated the antigenic differences between strains A/swine/Tianjin/312/2016 (TJ312, EA H1N1) and A/Guangdong-Maonan/SWL1536/2019 (GD1536, 2009/H1N1). Cross-hemagglutination inhibition (HI) assays revealed a significant antigenic disparity, with a 16-fold reduction in heterologous versus homologous HI titers. Comparative sequence analysis identified 22 amino acid differences across the five major antigenic sites (Sa, Sb, Ca1, Ca2, and Cb) of the HA1 subunit. Using reverse genetics, a panel of mutant viruses was generated. This study revealed that a single histidine (H)-to-asparagine (N) substitution at residue 128 (H3 numbering) in the Sa antigenic site acts as a primary determinant of antigenic variation, sufficient to cause a four-fold change in HI titers and a measurable drift in antigenic distance. Structural modeling via AlphaFold3 and PyMOL software suggests that the H128N mutation may alter the local conformation of the antigenic site. It is plausible that H at position 128 could exert electrostatic repulsion with adjacent amino acids, whereas N might facilitate hydrogen bond formation with neighboring residues. These interactions would potentially lead to structural changes in the antigenic site. Our findings confirm that residue 128 is a critical molecular marker for the antigenic differentiation of EA H1N1 and 2009/H1N1 viruses. The study underscores the necessity of monitoring specific HA mutations that could reduce cross-reactivity and provides valuable insights for refining vaccine strain selection and pandemic preparedness strategies.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


