Zuxian Chen, etc.,al. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein. Journal of Integrative Agriculture
Type I interferon (IFN)-mediated innate immune responses represent the first line of host defense against viral infection. However, the molecular mechanisms by which avian influenza virus (AIV) inhibits type I IFN production in ducks are not well understood. Here, we first found that the polymerase basic 2 (PB2) protein of H5N1 subtype AIV inhibited the type I IFN responses by targeting duck mitochondrial antiviral signaling protein (MAVS). We further demonstrated that H5N1-PB2 bound to the Δtransmembrane (ΔTM) domain of duck MAVS, and the polymerase basic 1 (PB1) binding domain (PBD) and RNA binding nuclear import domain (RND) of H5N1-PB2 interacted with MAVS to inhibit type I IFN expression in ducks. Collectively, our findings contribute to understanding the molecular mechanism by which AIV proteins regulate the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway to evade host antiviral immune responses in ducks.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


