Urban, C., Vrancken, B., Patrono, L.V. et al. An ancient influenza genome from Switzerland allows deeper insights into host adaptation during the 1918 flu pandemic in Europe. BMC Biol 23, 179 (2025)
Background
From 1918 to 1920, the largest influenza A virus (IAV) pandemic known to date spread globally causing between 20 to 100 million deaths. Historical records have captured critical aspects of the disease dynamics, such as the occurrence and severity of the pandemic waves. Yet, other important pieces of information such as the mutations that allowed the virus to adapt to its new host can only be obtained from IAV genomes. The analysis of specimens collected during the pandemic and still preserved in historical pathology collections can significantly contribute to a better understanding of its course. However, efficient RNA processing protocols are required to work with such specimens.
Results
Here, we describe an alternative protocol for efficient ancient RNA sequencing and evaluate its performance on historical samples, including a published positive control. The phenol/chloroform-free protocol efficiently recovers ancient viral RNA, especially small fragments, and maintains information about RNA fragment directionality through incorporating fragments by a ligation-based approach. One of the assessed historical samples allowed for the recovery of the first 1918 IAV genome from Switzerland. This genome, derived from a patient deceased during the beginning of the first pandemic wave in Switzerland, already harbours mutations linked to human adaptation.
Conclusion
We introduce an alternative, efficient workflow for ancient RNA recovery from formalin-fixed wet specimens. We also present the first precisely dated and complete influenza genome from Europe, highlighting the early occurrence of mutations associated with adaptation to humans during the first European wave of the 1918 pandemic.
From 1918 to 1920, the largest influenza A virus (IAV) pandemic known to date spread globally causing between 20 to 100 million deaths. Historical records have captured critical aspects of the disease dynamics, such as the occurrence and severity of the pandemic waves. Yet, other important pieces of information such as the mutations that allowed the virus to adapt to its new host can only be obtained from IAV genomes. The analysis of specimens collected during the pandemic and still preserved in historical pathology collections can significantly contribute to a better understanding of its course. However, efficient RNA processing protocols are required to work with such specimens.
Results
Here, we describe an alternative protocol for efficient ancient RNA sequencing and evaluate its performance on historical samples, including a published positive control. The phenol/chloroform-free protocol efficiently recovers ancient viral RNA, especially small fragments, and maintains information about RNA fragment directionality through incorporating fragments by a ligation-based approach. One of the assessed historical samples allowed for the recovery of the first 1918 IAV genome from Switzerland. This genome, derived from a patient deceased during the beginning of the first pandemic wave in Switzerland, already harbours mutations linked to human adaptation.
Conclusion
We introduce an alternative, efficient workflow for ancient RNA recovery from formalin-fixed wet specimens. We also present the first precisely dated and complete influenza genome from Europe, highlighting the early occurrence of mutations associated with adaptation to humans during the first European wave of the 1918 pandemic.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


