Madison T. Gouthro, Emalie K. Hayes, Taylor Prest,. [preprint]Detection of Avian Influenza Virus in Surface Waters Using Passive Samplers. https://doi.org/10.21203/rs.3.rs-6768892/v1
Avian influenza (AIV) remains a global concern not only for humans as a pandemic threat but pose a risk to poultry, wildlife, and livestock. The presence of AIV in the environment traditionally has relied on reactive surveillance, limiting proactive response. This study assessed the detection of Pan-influenza A virus (Pan-FluA) and hemagglutinin subtype H5 genes in surface water using novel passive samplers and molecular analyses. Pan-FluA RNA was detected at concentrations from 2.1×105 to 5.6×1012 copies sampler-1 and H5 RNA at concentrations from 2.2×104 to 1.8×1011 copies sampler-1. Detections aligned with fall migration and waterfowl activity but also underscored the importance of monitoring interface zones influenced by wildlife, agriculture, and wastewater. Among other hemagglutinin subtypes detected, sequence analyses confirmed the presence of H5 lineages consistent with those reported for H5N1, H5N6, and H5N8. These findings ultimately demonstrate the potential of surface water surveillance as a scalable strategy for AIV detection.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


