Sebastian Bittrich, etc.,al. Visualizing and analyzing 3D biomolecular structures using Mol* at RCSB.org: Influenza A H5N1 virus proteome case study. TOOLS FOR PROTEIN SCIENCE
The easiest and often most useful way to work with experimentally determined or computationally predicted structures of biomolecules is by viewing their three-dimensional (3D) shapes using a molecular visualization tool. Mol* was collaboratively developed by RCSB Protein Data Bank (RCSB PDB, RCSB.org) and Protein Data Bank in Europe (PDBe, PDBe.org) as an open-source, web-based, 3D visualization software suite for examination and analyses of biostructures. It is capable of displaying atomic coordinates and related experimental data of biomolecular structures together with a variety of annotations, facilitating basic and applied research, training, education, and information dissemination. Across RCSB.org, the RCSB PDB research-focused web portal, Mol* has been implemented to support single-mouse-click atomic-level visualization of biomolecules (e.g., proteins, nucleic acids, carbohydrates) with bound cofactors, small-molecule ligands, ions, water molecules, or other macromolecules. RCSB.org Mol* can seamlessly display 3D structures from various sources, allowing structure interrogation, superimposition, and comparison. Using influenza A H5N1 virus as a topical case study of an important pathogen, we exemplify how Mol* has been embedded within various RCSB.org tools—allowing users to view polymer sequence and structure-based annotations integrated from trusted bioinformatics data resources, assess patterns and trends in groups of structures, and view structures of any size and compositional complexity. In addition to being linked to every experimentally determined biostructure and Computed Structure Model made available at RCSB.org, Standalone Mol* is freely available for visualizing any atomic-level or multi-scale biostructure at rcsb.org/3d-view.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


