Partlow EA, Jaeggi-Wong A, Planitzer SD, Berg N, L. Influenza A virus rapidly adapts particle shape to environmental pressures. Nat Microbiol. 2025 Feb 10
Enveloped viruses such as influenza A virus (IAV) often produce a mixture of virion shapes, ranging from 100 nm spheres to micron-long filaments. Spherical virions use fewer resources, while filamentous virions resist cell-entry pressures such as antibodies. While shape changes are believed to require genetic adaptation, the mechanisms of how viral mutations alter shape remain unclear. Here we find that IAV dynamically adjusts its shape distribution in response to environmental pressures. We developed a quantitative flow virometry assay to measure the shape of viral particles under various infection conditions (such as multiplicity, replication inhibition and antibody treatment) while using different combinations of IAV strains and cell lines. We show that IAV rapidly tunes its shape distribution towards spheres under optimal conditions but favours filaments under attenuation. Our work demonstrates that this phenotypic flexibility allows IAV to rapidly respond to environmental pressures in a way that provides dynamic adaptation potential in changing surroundings.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


