Griffiths ME, Broos A, Morales J, Tu IT, Bergner L. Dynamics of influenza transmission in vampire bats revealed by longitudinal monitoring and a large-scale anthropogenic perturbation. Sci Adv. 2025 Feb 7;11(6):eads1267
Interrupting pathogen transmission between species is a priority strategy to mitigate zoonotic threats. However, avoiding counterproductive interventions requires knowing animal reservoirs of infection and the dynamics of transmission within them, neither of which are easily ascertained from the cross-sectional surveys that now dominate investigations into newly discovered viruses. We used biobanked sera and metagenomic data to reconstruct the transmission of recently discovered bat-associated influenza virus (BIV; H18N11) over 12 years in three zones of Peru. Mechanistic models fit under a Bayesian framework, which enabled joint inference from serological and molecular data, showed that common vampire bats maintain BIV independently of the now assumed fruit bat reservoir through immune waning and seasonal transmission pulses. A large-scale vampire bat cull targeting rabies incidentally halved BIV transmission, confirming vampire bats as maintenance hosts. Our results show how combining field studies, perturbation responses, and multi-data-type models can elucidate pathogen dynamics in nature and reveal pathogen-dependent effects of interventions.
See Also:
Latest articles in those days:
- Highly Pathogenic Avian Influenza Virus Exposure and Infection in Free-Ranging Bobcats (Lynx rufus) in New York, USA 16 hours ago
- Assessing the impact of influenza epidemics in Hong Kong 16 hours ago
- Baloxavir improves disease outcomes in mice after intranasal or ocular infection with Influenza A virus H5N1-contaminated cow´s milk 16 hours ago
- An overview of influenza H5 vaccines 3 days ago
- Seroprevalence of influenza A H1N1 and influenza D viruses in ruminants in Qatar 3 days ago
[Go Top] [Close Window]