Zhang C, Hou J, Li Z, Shen Q, Bai H, Chen L, Shen. PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins. Nat Chem Biol. 2025 Jan 15
Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.0, which enabled flexible incorporation of PTDs at various genomic loci of influenza viruses, including internal regions and terminal ends. The PROTAR 2.0 influenza viruses maintained efficient replication in UPS-deficient cells for large-scale production but were attenuated by PTD-mediated proteasomal degradation of viral proteins in conventional cells. Incorporation of multiple PTDs into one virus generated optimized PROTAR 2.0 vaccine candidates. In animal models, PROTAR 2.0 vaccine candidates were highly attenuated and a single-dose intranasal immunization induced robust and broad immune responses that provided complete cross-reactive protection against both homologous and heterologous viral challenges.
See Also:
Latest articles in those days:
- [preprint]Exploring influenza A virus receptor distribution in the lactating mammary gland of domesticated livestock and in human breast tissue 19 hours ago
- [preprint]The role of wild birds in the global highly pathogenic avian influenza H5 panzootic 19 hours ago
- Long-term culture of chicken tracheal organoids for the purpose of avian influenza virus research 2 days ago
- Seasonal Influenza Vaccination in People who Have Contact With Birds 2 days ago
- JNK kinase promotes inflammatory responses by inducing the expression of the inflammatory amplifier TREM1 during influenza A virus infection 2 days ago
[Go Top] [Close Window]