Zhao C, Zhang X, Wang H, Qiang H, Liu S, Zhang C,. Proteomic Analysis of Differentially Expressed Proteins in A549 Cells Infected with H9N2 Avian Influenza Virus. International Journal of Molecular Sciences. 2025;
Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection. Compared to the control group, the H9N2 infected group displayed 732 differentially expressed proteins (DEPs), with 298 proteins showing upregulation and 434 proteins showing downregulation. Gene Ontology (GO) functional analysis showed that DEPs were catalog in 11 biological processes, three cellular components, and eight molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEPs were involved in processes including cytokine signaling pathways induced by virus infection and protein digestion and absorption. Proteins including TP53, DDX58, and STAT3 were among the top hub proteins in the protein–protein interaction (PPI) analysis, suggesting that these signaling cascades could be essential for the propagation of IAVs. Furthermore, the host protein SNAPIN was chosen to ascertain the accuracy of expression changes identified through a proteomic analysis. The results indicated that SNAPIN was downregulated following infection with IAVs both in vitro and in vivo, which is consistent with the proteomics results, suggesting that SNAPIN may serve as a key regulatory factor in the viral life cycle of IAVs. Our research delineates an extensive interaction map of IAV infection within the A549 cells, facilitating the discovery of pivotal proteins that contribute to the virus’s propagation, potentially offering target candidates to screen for antiviral therapeutics.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


