Zhao L, Tian M, Hu X, Fan M, Hou C, Ping J. PB2 627V and HA 217 sites synergistically affect the lethality of H9N2 in mice. Virol Sin. 2024 Dec 17:S1995-820X(24)00199-8
The H9N2 subtype avian influenza virus (AIV) continues to propagate and undergo evolution within China, thereby posing a significant threat to the poultry industry. This study encompassed the collection of 436 samples and swabs in East China over the period spanning 2018 to 2019, from which 31 strains of the H9N2 subtype viruses were isolated and purified. We revealed that the HA and NA genes of the 31 isolates categorized within the Y280 branch, while the PB2 and M genes were associated with the G1 branch, and the remaining genes aligned with the F/98 branch. Despite this alignment, antigenic mapping demonstrated differences between the 2018 and 2019 strains, with the early vaccine strains displaying low serological reactivity toward these isolates. Notably, the CK/SH/49/19 isolate exhibited lethality in mice, characterized by a PB2 E627V mutation and a HA deletion at amino acid position 217. Mechanistically, in vitro studies showed that the influenza virus CK/SH/49/19 carrying PB2 627V and HA 217M mutations displayed enhanced replication capacity, attributed to the heightened activity of the polymerase with PB2 627V. Moreover, the absence of the amino acid at the HA 217 site obstructed viral adsorption and internalization, resulted in lower activation pH, and impeded the virus budding process. Critically, in vivo experiments revealed that CK/SH/49/19 (PB2 627V, HA 217Δ) triggered a robust activation of interferon response and interferon-stimulated genes. This study furnished a theoretical foundation for the scientific prevention and control strategies against H9N2 subtype avian influenza.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


