Denz PJ, Speaks S, Kenney AD, Eddy AC, Papa JL, Ro. Innate immune control of influenza virus interspecies adaptation via IFITM3. Nat Commun. 2024 Oct 30;15(1):9375
Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigate whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We find that IFITM3-deficient mice and human cells can be infected with low doses of avian influenza viruses that fail to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious virus dose threshold. Remarkably, influenza viruses passaged through Ifitm3-/- mice exhibit enhanced host adaptation, a result that is distinct from viruses passaged in mice deficient for interferon signaling, which exhibit attenuation. Our data demonstrate that IFITM3 deficiency uniquely facilitates potentially zoonotic influenza virus infections and subsequent adaptation, implicating IFITM3 deficiencies in the human population as a vulnerability for emergence of new pandemic viruses.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


