Rockey NC, Le Sage V, Shephard M, Vargas-Maldonado. Ventilation does not affect close-range transmission of influenza virus in a ferret playpen setup. Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e232
Sustained community spread of influenza viruses relies on efficient person-to-person transmission. Current experimental transmission systems do not mimic environmental conditions (e.g., air exchange rates, flow patterns), host behaviors, or exposure durations relevant to real-world settings. Therefore, results from these traditional systems may not be representative of influenza virus transmission in humans. To address this pitfall, we developed a close-range transmission setup that implements a play-based scenario and used it to investigate the impact of ventilation rates on transmission. In this setup, four immunologically naive recipient ferrets were exposed to a donor ferret infected with a genetically barcoded 2009 H1N1 virus (H1N1pdm09) for 4 h. The ferrets interacted in a shared space that included toys, similar to a childcare setting. Transmission efficiency was assessed under low and high ventilation, with air exchange rates of ~1.3 h-1 and 23 h-1, respectively. Transmission efficiencies observed in three independent replicate studies were similar between ventilation conditions. The presence of infectious virus or viral RNA on surfaces and in air throughout the exposure area was also not impacted by the ventilation rate. While high viral genetic diversity in donor ferret nasal washes was maintained during infection, recipient ferret nasal washes displayed low diversity, revealing a narrow transmission bottleneck regardless of ventilation rate. Examining the frequency and duration of ferret physical touches revealed no link between these interactions and a successful transmission event. Our findings indicate that exposures characterized by frequent, close-range interactions and the presence of fomites can overcome the benefits of increased ventilation.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


