Chi X, Huang G, Wang L, Zhang X, Liu J, Yin Z, Guo. A small protein encoded by PCBP1-AS1 is identified as a key regulator of influenza virus replication via enhancing autophagy. PLoS Pathog. 2024 Aug 13;20(8):e1012461
Many annotated long noncoding RNAs (lncRNAs) contain small open reading frames (sORFs), some of which have been demonstrated to encode small proteins or micropeptides with fundamental biological importance. However, functions of lncRNAs-encoded small proteins or micropeptides in viral pathogenesis remain largely unexplored. Here, we identified a 110-amino acid small protein as a key regulator of influenza A virus (IAV) replication. This small protein that we call PESP was encoded by the putative lncRNA PCBP1-AS1. It was observed that both PCBP1-AS1 and PESP were significantly upregulated by IAV infection. Furthermore, they were markedly induced by treatment with either type I or type III interferon. Overexpression of either PCBP1-AS1 or PESP alone significantly enhanced IAV replication. In contrast, shRNA-mediated knockdown of PCBP1-AS1 or CRISPR/Cas9-mediated knockout of PESP markedly inhibited the viral production. Moreover, the targeted deletion or mutation of the sORF within the PCBP1-AS1 transcript, which resulted in the disruption of PESP expression, significantly diminished the capacity of PCBP1-AS1 to enhance IAV replication, underscoring the indispensable role of PESP in the facilitation of IAV replication by PCBP1-AS1. Interestingly, overexpression of PESP enhanced the IAV-induced autophagy by increasing the expression of ATG7, an essential autophagy effector enzyme. We also found that the 7-22 amino acids at the N-terminus of PESP were crucial for its functionality in modulating ATG7 expression and action as an enhancer of IAV replication. Additionally, HSP90AA1, a protein identified previously as a facilitator of autophagy, was found to interact with PESP, resulting in the stabilization of PESP and consequently an increase in the production of IAV. These data reveal a critical lncRNA-encoded small protein that is induced and exploited by IAV during its infection, and provide a significant insight into IAV-host interaction network.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


