Teo QW, Wang Y, Lv H, Mao KJ, Tan TJC, Huan YW, Ri. [preprint]Deep mutational scanning of influenza A virus NEP reveals pleiotropic mutations in its N-terminal domain. https://doi.org/10.1101/2024.05.16.594574
The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. Besides, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function. Here, we systematically measured the replication fitness effects of >1,800 mutations of NEP. Our results show that the N-terminal domain has high mutational tolerance. Additional experiments demonstrate that N-terminal domain mutations pleiotropically affect viral transcription and replication dynamics, host cellular responses, and mammalian adaptation of avian influenza virus. Overall, our study not only advances the functional understanding of NEP, but also provides insights into its evolutionary constraints.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


