Chen Q, Zheng X, Xu B, Sun M, Zhou Q, Lin J, Que X. Exploring the spatiotemporal relationship between influenza and air pollution in Fuzhou using spatiotemporal weighted regression model. Sci Rep. 2024 Feb 19;14(1):4116
Air pollution has become a significant concern for human health, and its impact on influenza, has been increasingly recognized. This study aims to explore the spatiotemporal heterogeneity of the impacts of air pollution on influenza and to confirm a better method for infectious disease surveillance. Spearman correlation coefficient was used to evaluate the correlation between air pollution and the influenza case counts. VIF was used to test for collinearity among selected air pollutants. OLS regression, GWR, and STWR models were fitted to explore the potential spatiotemporal relationship between air pollution and influenza. The R2, the RSS and the AICc were used to evaluate and compare the models. In addition, the DTW and K-medoids algorithms were applied to cluster the county-level time-series coefficients. Compared with the OLS regression and GWR models, STWR model exhibits superior fit especially when the influenza outbreak changes rapidly and is able to more accurately capture the changes in different regions and time periods. We discovered that identical air pollutant factors may yield contrasting impacts on influenza within the same period in different areas of Fuzhou. NO2 and PM10 showed opposite impacts on influenza in the eastern and western areas of Fuzhou during all periods. Additionally, our investigation revealed that the relationship between air pollutant factors and influenza may exhibit temporal variations in certain regions. From 2013 to 2019, the influence coefficient of O3 on influenza epidemic intensity changed from negative to positive in the western region and from positive to negative in the eastern region. STWR model could be a useful method to explore the spatiotemporal heterogeneity of the impacts of air pollution on influenza in geospatial processes. The research findings emphasize the importance of considering spatiotemporal heterogeneity when studying the relationship between air pollution and influenza.
See Also:
Latest articles in those days:
- Natural infection of common cranes (Grus grus) with highly pathogenic avian influenza H5N1 in Serbia 3 hours ago
- Confirmation of highly pathogenic avian influenza H5N1 in skuas, Antarctica 2024 3 hours ago
- [preprint]Establishing methods to monitor H5N1 influenza virus in dairy cattle milk 13 hours ago
- Development of a Large-Volume Concentration Method to Recover Infectious Avian Influenza Virus from the Aquatic Environment 13 hours ago
- Meta-Analysis of Seroprevalence and Prevalence of Influenza A Viruses (Subtypes H3N2, H3N8, and H1N1) in Dogs 13 hours ago
[Go Top] [Close Window]