K?nig S, Schroeder J, Nietzsche S, Heinekamp T, Br. The influenza A virus promotes fungal growth of Aspergillus fumigatus via direct interaction in vitro. Microbes Infect. 2023 Nov 24:105264
Seasonal influenza A virus (IAV) infections still pose a major burden for public health worldwide. Severe disease progression or even death is often related to superinfections of the virus and a secondary bacterial pathogen. However, fungi, especially Aspergillus fumigatus, are also frequently diagnosed during IAV infection. Although, clinical studies have reported the severity of influenza-associated pulmonary aspergillosis, the molecular mechanisms underlying this type of disease are poorly understood. Here, a new in vitro model is introduced that allows the investigation of complex pathogen-host and pathogen-pathogen interactions during coinfection of lung epithelial cells with IAV and A. fumigatus. Our data reveal a reduced IAV load and IAV-induced cytokine and chemokine expression in the presence of A. fumigatus. At the same time, IAV infection promotes the growth of A. fumigatus. Even in the absence of the human host cell, purified IAV particles are able to induce hyphal growth, due to a direct interaction of the virus particles with the fungal surface. Thus, our study gives first insights into the complex interplay between IAV, A. fumigatus and the host cell as well as the two pathogens alone.
See Also:
Latest articles in those days:
- Extended influenza seasons in Australia and New Zealand in 2025 due to the emergence of influenza A(H3N2) subclade K viruses 10 hours ago
- Dynamic ensemble deep learning with multi-source data for robust influenza forecasting in Yangzhou 10 hours ago
- Structural and immunological characterization of the H3 influenza hemagglutinin during antigenic drift 10 hours ago
- Novel Highly Pathogenic Avian Influenza A(H5N1) Virus, Argentina, 2025 13 hours ago
- Avian influenza overview September - November 2025 2 days ago
[Go Top] [Close Window]


