Nan Chen, etc.,al. Establishment of an in vivo neutralization model based on H5N1 pseudovirus. DOI: 10.3760/cma.j.cn112309-20230206-00023
Objective To establish an in vivo infection model of H5N1 pseudovirus and to detect the neutralizing activity of FHA3 antibody using this model.
Methods Based on the sequence information of hemagglutinin (HA) and neuraminidase (NA) of A/Anhui/1/2005/H5N1 strain, two recombinant plasmids of pcDNA3.1-HA5 and pcDNA3.1-NA1 were constructed. The two plasmids and plasmid pNL4-3.Luc.R-E- were co-transfected into 293T cells to prepare H5N1 pseudovirus supernatant. The morphology of pseudovirus particles in the supernatant was observed by electron microscopy. MDCK cells were infected with the pseudovirus supernatant and the virus titer was detected. BALB/c mice were injected with the pseudovirus supernatant by intraperitoneal injection and subjected to bioluminescence imaging at 2, 5, 8, and 12 d after infection to detect the pseudovirus infection in vivo. The functional activity of FHA3 antibody in vivo was evaluated using the established mouse infection model.
Results The recombinant plasmids pcDNA3.1-HA5 and pcDNA3.1-NA1 were correctly constructed and could be used to prepare pseudovirus supernatants of high titer by co-transfecting 293T cells with the plasmid pNL4-3.Luc.R-E-. The virus particles were round under electron microscope. H5N1 pseudovirus-infected mice exhibits strong fluorescence signals, which were attenuated by FHA3 treatment before challenge.
Conclusions The in vivo infection model of H5N1 pseudovirus was successfully constructed and FHA3 antibody was proved to be protective against the pseudovirus infection.
Methods Based on the sequence information of hemagglutinin (HA) and neuraminidase (NA) of A/Anhui/1/2005/H5N1 strain, two recombinant plasmids of pcDNA3.1-HA5 and pcDNA3.1-NA1 were constructed. The two plasmids and plasmid pNL4-3.Luc.R-E- were co-transfected into 293T cells to prepare H5N1 pseudovirus supernatant. The morphology of pseudovirus particles in the supernatant was observed by electron microscopy. MDCK cells were infected with the pseudovirus supernatant and the virus titer was detected. BALB/c mice were injected with the pseudovirus supernatant by intraperitoneal injection and subjected to bioluminescence imaging at 2, 5, 8, and 12 d after infection to detect the pseudovirus infection in vivo. The functional activity of FHA3 antibody in vivo was evaluated using the established mouse infection model.
Results The recombinant plasmids pcDNA3.1-HA5 and pcDNA3.1-NA1 were correctly constructed and could be used to prepare pseudovirus supernatants of high titer by co-transfecting 293T cells with the plasmid pNL4-3.Luc.R-E-. The virus particles were round under electron microscope. H5N1 pseudovirus-infected mice exhibits strong fluorescence signals, which were attenuated by FHA3 treatment before challenge.
Conclusions The in vivo infection model of H5N1 pseudovirus was successfully constructed and FHA3 antibody was proved to be protective against the pseudovirus infection.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 13 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 13 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 13 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 13 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


