Yuan L, Li X, Li M, Bi R, Li Y, Song J, Li W, Yan. In silico design of a broad-spectrum multiepitope vaccine against influenza virus. Int J Biol Macromol. 2023 Nov 13:128071
Influenza remains a global health concern due to its potential to cause pandemics as a result of rapidly mutating influenza virus strains. Existing vaccines often struggle to keep up with these rapidly mutating flu viruses. Therefore, the development of a broad-spectrum peptide vaccine that can stimulate an optimal antibody response has emerged as an innovative approach to addressing the influenza threat. In this study, an immunoinformatic approach was employed to rapidly predict immunodominant epitopes from different antigens, aiming to develop an effective multiepitope influenza vaccine (MEV). The immunodominant B-cell linear epitopes of seasonal influenza strains hemagglutinin (HA) and neuraminidase (NA) were predicted using an antibody-peptide microarray, involving a human cohort including vaccinees and infected patients. On the other hand, bioinformatics tools were used to predict immunodominant cytotoxic T-cell (CTL) and helper T-cell (HTL) epitopes. Subsequently, these epitopes were evaluated by various immunoinformatic tools. Epitopes with high antigenicity, high immunogenicity, non-allergenicity, non-toxicity, as well as exemplary conservation were then connected in series with appropriate linkers and adjuvants to construct a broad-spectrum MEV. Moreover, the structural analysis revealed that the MEV candidates exhibited good stability, and the docking results demonstrated their strong affinity to Toll-like receptors 4 (TLR4). In addition, molecular dynamics simulation confirmed the stable interaction between TLR4 and MEVs. Three injections with MEVs showed a high level of B-cell and T-cell immune responses according to the immunological simulations in silico. Furthermore, in-silico cloning was performed, and the results indicated that the MEVs could be produced in considerable quantities in Escherichia coli (E. coli). Based on these findings, it is reasonable to create a broad-spectrum MEV against different subtypes of influenza A and B viruses in silico.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 20 hours ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 20 hours ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 21 hours ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 21 hours ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 21 hours ago
[Go Top] [Close Window]


