-

nihao guest [ sign in / register ]
2024-4-28 20:03:49


Liang CY, Huang I, Han J, Sownthirarajan B, Kulhan. Avian influenza A viruses exhibit plasticity in sialylglycoconjugate receptor usage in human lung cells. J Virol. 2023 Oct 16:e0090623
submited by kickingbird at Oct, 17, 2023 20:43 PM from J Virol. 2023 Oct 16:e0090623

Influenza A viruses (IAV) utilize sialic acid (Sia) containing cell surface glycoconjugates for host cell infection, and IAV strains from different host species show preferences for structurally distinct Sia at the termini of glycoconjugates. Various types of cell surface glycoconjugates (N-glycans, O-glycans, glycolipids) display significant diversity in both structure and carbohydrate composition. To define the types of sialylglycoconjugates that facilitate IAV infection, we utilized the CRISPR/Cas9 technique to truncate the three major types of glycoconjugates, either individually or in combination, by targeting glycosyltransferases essential to glycan biosynthesis in a human lung epithelial cell line. Our studies show that both human and avian IAV strains do not display strict preferences for a specific type of glycoconjugate. Interestingly, truncation of the three major types of glycoconjugates significantly decreased replication of human IAV strains, yet did not impact replication of avian IAV strains. Unlike human IAV strains, avian IAV strains were able to efficiently utilize other less prevalent shorter glycoconjugates such as sialyl Tn and sialyl T antigens. Taken together, our studies demonstrate that avian IAV strains utilize a broader repertoire of glycoconjugates for host cell infection as compared to human IAV strains. IMPORTANCE It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.

See Also:

Latest articles in those days:

[Go Top]    [Close Window]

Related Pages:
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2024. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn