Peng F, Xia Y, Li W. Prediction of Antigenic Distance in Influenza A Using Attribute Network Embedding. Viruses. 2023 Jun 29;15(7):1478
Owing to the rapid changes in the antigenicity of influenza viruses, it is difficult for humans to obtain lasting immunity through antiviral therapy. Hence, tracking the dynamic changes in the antigenicity of influenza viruses can provide a basis for vaccines and drug treatments to cope with the spread of influenza viruses. In this paper, we developed a novel quantitative prediction method to predict the antigenic distance between virus strains using attribute network embedding techniques. An antigenic network is built to model and combine the genetic and antigenic characteristics of the influenza A virus H3N2, using the continuous distributed representation of the virus strain protein sequence (ProtVec) as a node attribute and the antigenic distance between virus strains as an edge weight. The results show a strong positive correlation between supplementing genetic features and antigenic distance prediction accuracy. Further analysis indicates that our prediction model can comprehensively and accurately track the differences in antigenic distances between vaccines and influenza virus strains, and it outperforms existing methods in predicting antigenic distances between strains.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 15 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 15 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 15 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 15 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


