Zhang R, Li Y, Bi P, Wu S, Peng Z, Meng Y, Wang Y,. Seasonal associations between air pollutants and influenza in 10 cities of southern China. Int J Hyg Environ Health. 2023 Jun 15;252:114200
Few studies have explored the associations between air pollutants and influenza across seasons, especially at large scales. This study aimed to evaluate seasons´ modifying effects on associations between air pollutants and influenza from 10 cities of southern China. Through scientific evidence, it provides mitigation and adaptation strategies with practical guidelines to local health authorities and environmental protection agencies. Daily influenza incidence, meteorological, and air pollutants data from 2016 to 2019 were collected. Quasi-Poisson regression with a distributed lag nonlinear model was used to evaluate city-specific air pollutants and influenza associations. Meta-analysis was used to pool site-specific estimates. Attributable fractions (AFs) of influenza incidence due to pollutants were calculated. Stratified analyses were conducted by season, sex, and age. Overall, the cumulative relative risk (CRR) of influenza incidence for a 10-unit increase in PM2.5, PM10, SO2, NO2, and CO was 1.45 (95% CI: 1.25, 1.68), 1.53 (95% CI: 1.29, 1.81), 1.87 (95% CI: 1.40, 2.48), 1.74 (95% CI: 1.49, 2.03), and 1.19 (95% CI: 1.04, 1.36), respectively. Children aged 0-17 were more sensitive to air pollutants in spring and winter. PM10 had greater effect on influenza than PM2.5 in autumn, winter, and overall, lesser in spring. The overall AF due to PM2.5, PM10, SO2, NO2, and CO was 4.46% (95% eCI: 2.43%, 6.43%), 5.03% (95% eCI: 2.33%, 7.56%), 5.36% (95% eCI: 3.12%, 7.58%), 24.88% (95% eCI: 18.02%, 31.67%), and 23.22% (95% eCI: 17.56%, 28.61%), respectively. AF due to O3 was 10.00% (95% eCI: 4.76%, 14.95%) and 3.65% (95% eCI: 0.50%, 6.59%) in spring and summer, respectively. The seasonal variations in the associations between air pollutants and influenza in southern China would provide evidence to service providers for tailored intervention, especially for vulnerable populations.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


