Zhang R, Li Y, Bi P, Wu S, Peng Z, Meng Y, Wang Y,. Seasonal associations between air pollutants and influenza in 10 cities of southern China. Int J Hyg Environ Health. 2023 Jun 15;252:114200
Few studies have explored the associations between air pollutants and influenza across seasons, especially at large scales. This study aimed to evaluate seasons´ modifying effects on associations between air pollutants and influenza from 10 cities of southern China. Through scientific evidence, it provides mitigation and adaptation strategies with practical guidelines to local health authorities and environmental protection agencies. Daily influenza incidence, meteorological, and air pollutants data from 2016 to 2019 were collected. Quasi-Poisson regression with a distributed lag nonlinear model was used to evaluate city-specific air pollutants and influenza associations. Meta-analysis was used to pool site-specific estimates. Attributable fractions (AFs) of influenza incidence due to pollutants were calculated. Stratified analyses were conducted by season, sex, and age. Overall, the cumulative relative risk (CRR) of influenza incidence for a 10-unit increase in PM2.5, PM10, SO2, NO2, and CO was 1.45 (95% CI: 1.25, 1.68), 1.53 (95% CI: 1.29, 1.81), 1.87 (95% CI: 1.40, 2.48), 1.74 (95% CI: 1.49, 2.03), and 1.19 (95% CI: 1.04, 1.36), respectively. Children aged 0-17 were more sensitive to air pollutants in spring and winter. PM10 had greater effect on influenza than PM2.5 in autumn, winter, and overall, lesser in spring. The overall AF due to PM2.5, PM10, SO2, NO2, and CO was 4.46% (95% eCI: 2.43%, 6.43%), 5.03% (95% eCI: 2.33%, 7.56%), 5.36% (95% eCI: 3.12%, 7.58%), 24.88% (95% eCI: 18.02%, 31.67%), and 23.22% (95% eCI: 17.56%, 28.61%), respectively. AF due to O3 was 10.00% (95% eCI: 4.76%, 14.95%) and 3.65% (95% eCI: 0.50%, 6.59%) in spring and summer, respectively. The seasonal variations in the associations between air pollutants and influenza in southern China would provide evidence to service providers for tailored intervention, especially for vulnerable populations.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 14 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 14 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 14 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 14 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


