O´Neill G, Aziz A, Kuba M, Brown SK, Lau H,. Report on influenza viruses received and tested by the Melbourne WHO Collaborating Centre for Reference and Research on Influenza during 2020-2021. Commun Dis Intell (2018). 2022 Sep 26;46
As part of its role in the World Health Organization´s (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 2,393 human influenza positive samples between 1 January 2020 and 31 December 2021 (2020: n = 2,021 samples; 2021: n = 372 samples). Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen´s eggs for potential use in seasonal influenza virus vaccines. During 2020-2021, influenza A viruses (A(H1N1)pdm09 in 2020 and A(H3N2) in 2021) predominated over influenza B viruses. In 2020, the majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2020. In 2021, the majority of A(H1N1)pdm09 and A(H3N2) viruses were found to be antigenically distinct relative to the WHO recommended vaccine strains for the southern hemisphere in 2021. Of the influenza B viruses analysed at the Centre, 46.7% were found to be antigenically distinct to the respective WHO recommended vaccine strains. Of 1,538 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir (in 2020, n = 1,374; in 2021, n = 164), two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir, and one A(H1N1)pdm09 virus showed highly reduced inhibition against zanamivir. All of these samples were received in 2020.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 2 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 2 days ago
[Go Top] [Close Window]


