Waters K, Gao C, Ykema M, Han L, Voth L, Tao YJ, W. Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses. PLoS Pathog. 2021 Oct 7;17(10):e1009962
Compatibility among the influenza A virus (IAV) ribonucleoprotein (RNP) genes affects viral replication efficiency and can limit the emergence of novel reassortants, including those with potential pandemic risks. In this study, we determined the polymerase activities of 2,451 RNP reassortants among three seasonal and eight enzootic IAVs by using a minigenome assay. Results showed that the 2009 H1N1 RNP are more compatible with the tested enzootic RNP than seasonal H3N2 RNP and that triple reassortment increased such compatibility. The RNP reassortants among 2009 H1N1, canine H3N8, and avian H4N6 IAVs had the highest polymerase activities. Residues in the RNA binding motifs and the contact regions among RNP proteins affected polymerase activities. Our data indicates that compatibility among seasonal and enzootic RNPs are selective, and enzoosis of multiple strains in the animal-human interface can facilitate emergence of an RNP with increased replication efficiency in mammals, including humans.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 19 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 19 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 19 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 19 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


