Ren K, Li X, Zhang Q. Near-optimal control and threshold behavior of an avian influenza model with spatial diffusion on complex networks. Math Biosci Eng. 2021 Jul 28;18(5):6452-6483
Near-optimization is as sensible and important as optimization for both theory and applications. This paper concerns the near-optimal control of an avian influenza model with saturation on heterogeneous complex networks. Firstly, the basic reproduction number $ \mathcal{R}_{0} $ is defined for the model, which can be used to govern the threshold dynamics of influenza disease. Secondly, the near-optimal control problem was formulated by slaughtering poultry and treating infected humans while keeping the loss and cost to a minimum. Thanks to the maximum condition of the Hamiltonian function and the Ekeland´s variational principle, we establish both necessary and sufficient conditions for the near-optimality by several delicate estimates for the state and adjoint processes. Finally, a number of examples presented to illustrate our theoretical results.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 14 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 14 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 14 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 14 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


