Zhang M, Huang Y, Godson DL, Fernando C, Alexander. Assessment of Metagenomic Sequencing and qPCR for Detection of Influenza D Virus in Bovine Respiratory Tract Samples. Viruses. 2020;12(8):E814
High throughput sequencing is currently revolutionizing the genomics field and providing new approaches to the detection and characterization of microorganisms. The objective of this study was to assess the detection of influenza D virus (IDV) in bovine respiratory tract samples using two sequencing platforms (MiSeq and Nanopore (GridION)), and species-specific qPCR. An IDV-specific qPCR was performed on 232 samples (116 nasal swabs and 116 tracheal washes) that had been previously subject to virome sequencing using MiSeq. Nanopore sequencing was performed on 19 samples positive for IDV by either MiSeq or qPCR. Nanopore sequence data was analyzed by two bioinformatics methods: What´s In My Pot (WIMP, on the EPI2ME platform), and an in-house developed analysis pipeline. The agreement of IDV detection between qPCR and MiSeq was 82.3%, between qPCR and Nanopore was 57.9% (in-house) and 84.2% (WIMP), and between MiSeq and Nanopore was 89.5% (in-house) and 73.7% (WIMP). IDV was detected by MiSeq in 14 of 17 IDV qPCR-positive samples with Cq (cycle quantification) values below 31, despite multiplexing 50 samples for sequencing. When qPCR was regarded as the gold standard, the sensitivity and specificity of MiSeq sequence detection were 28.3% and 98.9%, respectively. We conclude that both MiSeq and Nanopore sequencing are capable of detecting IDV in clinical specimens with a range of Cq values. Sensitivity may be further improved by optimizing sequence data analysis, improving virus enrichment, or reducing the degree of multiplexing.
See Also:
Latest articles in those days:
- Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus 12 hours ago
- Genetic characteristics and pathogenicity of novel reassortant H6 viruses isolated from wild birds in China 3 days ago
- Risk Mapping of Highly Pathogenic Avian Influenza H5 during 2012-2017 in Taiwan with Spatial Bayesian Modeling: Implications for Surveillance and Control Policies 4 days ago
- Administration of a CXCR2 antagonist, SCH527123, together with oseltamivir suppresses NETosis and protects mice from lethal influenza and piglets from swine-influenza infection 4 days ago
- Identification of key candidate biomarkers for severe influenza infection by integrated bioinformatical analysis and initial clinical validation 5 days ago
[Go Top] [Close Window]