nihao guest [ sign in / register ]
2020-11-24 5:21:00

Hernandez-Mejia G, Hernandez-Vargas EA. Uncovering antibody cross-reaction dynamics in influenza A infections. Bioinformatics. 2020;btaa691
submited by kickingbird at Jul, 31, 2020 11:44 AM from Bioinformatics. 2020;btaa691

Motivation: Influenza viruses are a cause of large outbreaks and pandemics with high death tolls. A key obstacle is that flu vaccines have inconsistent performance, in the best cases up to 60% effectiveness, but it can be as low as 10%. Uncovering the hidden pathways of how antibodies (Abs) induced by one influenza strain are effective against another, cross-reaction, is a central vexation for the design of universal flu vaccines.
Results: We conceive a stochastic model that successfully represents the antibody cross-reactive data from mice infected with H3N2 influenza strains and further validation with cross-reaction data of H1N1 strains. Using a High-Performance Computing (HPC) cluster, several aspects and parameters in the model were tested. Computational simulations highlight that changes in time of infection and the B-cells population are relevant, however, the affinity threshold of B-cells between consecutive infections is a necessary condition for the successful Abs cross-reaction. Our results suggest a 3-D reformulation of the current influenza antibody landscape for the representation and modeling of cross-reactive data.
Availability: The full code as a testing/simulation platform is freely available here: https://github.com/systemsmedicine/Antibody_cross-reaction_dynamics.

See Also:

Latest articles in those days:

[Go Top]    [Close Window]

Related Pages:
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


Site map  |   Contact us  |  Term of use  |  FAQs
Copyright ©www.flu.org.cn. 2004-2020. All Rights Reserved. Powered by FIC 4.0.1