Podshivalov DD, Kirilin EM, Konnov SI, ?vedas VK. Structural Organization and Dynamic Characteristics of the Binding Site for Conformational Rearrangement Inhibitors in Hemagglutinins From H3N2 and H7N9 Influenza Viruses. Biochemistry (Mosc). 2020;85(4):499-506
Computer models of hemagglutinins from the H3N2 and H7N9 influenza viruses were developed to study structural organization and dynamic characteristics of the binding site for the conformational rearrangement inhibitors. The metadynamics was used to map the binding site free energy and to define the volume of its most energetically favorable states. It was demonstrated by simulation of the umifenovir (Arbidol) interaction with hemagglutinin that ligand binding requires an increase in the binding site volume and deformation of its most energetically favorable state. We also identified amino acid residues directly involved in the ligand binding that determine the binding efficiency, as well as the dynamic behavior of the binding site. The revealed features of the binding site structural organization of the influenza virus hemagglutinin should be taken into account when searching for new antiviral drugs capable to modulate its functional properties.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 21 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 21 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 21 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 21 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


