Laconi A, Fortin A, Bedendo G, et al. Detection of Avian Influenza Virus: A Comparative Study of the in Silico and in Vitro Performances of Current RT-qPCR Assays. Sci Rep. 2020;10(1):8441.
Avian influenza viruses (AIV) are negative sense RNA viruses posing a major threat to the poultry industry worldwide, with the potential to spread to mammals, including humans; hence, an accurate and rapid AIV diagnosis is essential. To date AIV detection relies on molecular methods, mainly RT-qPCR directed against AIV M gene segment. The evolution of AIV represents a relevant issue in diagnostic RT-qPCR due to possible mispriming and/or probe-binding failures resulting in false negative results. Consequently, RT-qPCR for AIV detection should be periodically re-assessed both in silico and in vitro. To this end, a specific workflow was developed to evaluate in silico the complementarity of primers and probes of four published RT-qPCR protocols to their target regions. The four assays and one commercially available kit for AIV detection were evaluated both for their analytical sensitivity using eight different viral dilution panels and for their diagnostic performances against clinical specimens of known infectious status. Differences were observed among the tests under evaluation, both in terms of analytical sensitivity and of diagnostic performances. This finding confirms the importance of continuously monitoring the primers and probes complementarity to their binding regions.
See Also:
Latest articles in those days:
- Host restriction factor SAMHD1 does not restrict seasonal influenza virus replication in human epithelial or macrophage-like cells 20 hours ago
- Enhancing the stability of Influenza A reporter viruses by recoding the gfp gene 20 hours ago
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 3 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 3 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 3 days ago
[Go Top] [Close Window]


